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Abstract

The nested logit model has become an important tool for the em-
pirical analysis of discrete outcomes. There is some confusion about its
specification of the outcome probabilities. Two major variants show
up in the literature. This paper compares both and finds that one
of them (called random utility maximization nested logit, RUMNL)
is preferable in most situations. Since the command nlogit of Stata
7.0 implements the other variant (called non-normalized nested logit,
NNNL), an implementation of RUMNL called nlogitrum is intro-
duced. Numerous examples support and illustrate the differences of
both specifications.

1 Introduction

The nested logit model has become an important tool for the empirical anal-
ysis of discrete outcomes. It is attractive since it relaxes the strong assump-
tions of the multinomial (or conditional) logit model. At the same time,
it is computationally straightforward and fast compared to the multinomial
probit, mixed logit, or other even more flexible models due to the existence
of a closed-form expression for the likelihood function.

∗I would like to thank Axel Börsch-Supan, Melanie Lührmann, and Joachim Winter
for their helpful comments and the Gesamtverband der Deutschen Versicherungswirtschaft
and the Land Baden Württemberg for their financial support. Correspondence to: Florian
Heiss; University of Mannheim; MEA; L13,17; 68131 Mannheim; Germany. Phone: +49-
621-181-1858, Fax: +49-621-181-1863, email: heiss@econ.uni-mannheim.de
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There is some confusion about the specification of the outcome probabil-
ities in nested logit models. Two substantially different formulas and many
minor variations of them are presented and used in the empirical literature
and in textbooks. Many researches are neither aware of this issue nor which
version is actually implemented by the software they use. This obscures the
interpretation of their results. This problem has been previously discussed
by Hensher and Greene (2000), Hunt (2000), Koppelman and Wen (1998),
and Louviere et al. (2000, section 6.5). This paper provides a comparison
of both approaches in a similar spirit. It argues and shows in numerous ex-
amples that one of these specifications is preferable in most situations. The
package nlogit of Stata 7.0 does not implement this specification. Therefore
the package nlogitrum is presented, which does.

Section 2 provides a brief introduction to nested logit models and their
different specifications. Section 3 discusses the consequences of these spec-
ifications in various modeling situations and illustrates the arguments with
empirical examples. Section 4 introduces the new Stata commands and sec-
tion 5 concludes.

2 Nested logit defined

The nested multinomial logit (NMNL) model is a generalization of the multi-
nomial (or McFadden’s conditional) logit model. It allows groups of alter-
natives to be similar to each other in an unobserved way. The researcher
specifies a structure that partitions the alternatives into groups (‘nests’).
This can be generalized to various nesting levels by grouping the alternatives
within such a nest in sub-nests and so on.

For simplicity, assume a two-level nesting structure. Suppose that there
are J alternatives numbered as j = 1, 2, ...J . They are partitioned into K
nests N1, N2, ..., Nk, ...NK . Suppose, y ∈ {1, 2, ..., j, ...J} is an indicator for
the realized outcome. If alternative j is an element of nest Nk, then the
probability of y = j can in general be decomposed into

P (y = j) = P (y ∈ Nk) · P (y = j|y ∈ Nk). (1)

The NMNL model can be derived from a structural model of random
utility maximization (RUM). Agents are assumed to choose the alternative
from which they derive the highest utility. The utility for alternative j is
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specified as
Uj = x′

jβ + z′γj + εj. (2)

It is determined by a set of individual-specific (socio-economic) explanatory
variables z containing a constant, by a set of alternative-specific variables
xj, and by a random error term εj . If these error terms are assumed to
be distributed according to a special form of the generalized extreme value
(GEV) distribution, the resulting outcome probabilities are:1

P (y = j|y ∈ Nk) =
e

1
τk

Vj

eIVk
, (3)

where Vj = x′
jβ + z′γj denotes the deterministic part of the utility, and

P (y ∈ Nk) =
eτkIVk∑
m eτmIVm

, (4)

with the inclusive value IVk defined as

IVk = ln
∑
l∈Nk

e
1

τk
Vl . (5)

The marginal probability of the outcome j according to equation (1) is
under these assumptions equal to

P (y = j) =
e

1
τk

Vj

eIVj
· eτkIVk∑

m eτmIVm
. (6)

The parameters τk are called IV or dissimilarity parameters. They correspond
to the degree of dissimilarity between the alternatives within one nest.2 The
multinomial (conditional) logit model follows in the special case of τk =
1, ∀k = 1, ..., K. The model is consistent with RUM if all τ lie in the unit
interval.3 Therefore, this model will be called random utility maximization
nested logit (RUMNL) in this paper. For an introduction to this model see
also Train (1986).

1See McFadden (1981) or Börsch-Supan (1987).
2Other equivalent parameterizations are used in the literature. McFadden (1981) writes

the equivalent of equation (6) and replaces τk with σk = 1 − τk, Louviere et al. (2000)
replaces τk with µk = 1/τk.

3This condition can be relaxed for local consistency with RUM, see Börsch-Supan
(1990).
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If there are socioeconomic variables whose coefficients are assumed to be
constant within the nests, they can instead of including them in the vector z
be collected in a vector w. Then, an equivalent formulation of equation (6)
is

P (y = j) =
e

1
τk

Vj

eIVj
· ew′Æk+τkIVk∑

m ew′Æm+τmIVm
. (7)

A similar model that is also called nested logit is presented in the litera-
ture, see for example Greene (2000, section 19.7.4). The choice probabilities
of this model are specified as

Q(y = j) =
eVj

eIVj
· ew′Æk+θkIVk∑

m ew′Æm+τmIVm
, (8)

with
IVk = ln

∑
l∈Nk

eVl . (9)

This is the model implemented by nlogit, see [R] nlogit. The rela-
tionship between both specifications becomes more evident if the RUMNL
probability (7) is rewritten as

P (y = j) =
e
eVj

efIV j

· ew′Æk+τk
fIV k∑

m ew′Æm+τmfIV m

, (10)

with
ĨV k = ln

∑
l∈Nk

e
eVl . (11)

and

Ṽj =
Vj

τk
. (12)

A comparison with equations (8) and (9) shows that this model corresponds

to a RUMNL model except that the Vj are replaced the the scaled Ṽj with
different scaling factors 1/τk across nests. Therefore, this model will be called
non-normalized nested logit (NNNL) model in this paper.

Because of the scaling, the parameter estimates of NNNL are not direct
estimates of the parameters of the underlying RUM model. Depending on
the specification of Vj and the nesting structure, this can have different im-
plications for the consistency of the model with the underlying theory as will
be discussed in detail in the next section.
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3 Different model specifications

In this section, the differences between RUMNL and NNNL in different model
settings are discussed and demonstrated in various examples. The empirical
examples are based on well-known data on travel mode choice. Among others,
Greene (2000, example 19.18), Hunt (2000), and Louviere et al. (2000, section
6.4) present nested logit estimates based on them. The data contain 210 non-
business travelers between Sydney, Canberra, and Melbourne. They had four
travel modes alternatives: car, train, bus, plane. In this paper, only three sets
of explanatory variables are used to demonstrate the effects of the different
model specifications. These are:

• const×alt : alternative-specific constants (ASCs)

• hinc×alt : Household income, interacted with the ASCs

• time and time×alt : traveling time with the alternative modes, (partly)
interacted with the ASC

3.1 The case of alternative-specific coefficients only

If only alternative-specific coefficients γj enter the model, equation (2) sim-
plifies to

Vj = z′γj (13)

and equation (12) can be written as

Ṽj = z′γ̃j (14)

with

γ̃j =
1

τm

γj . (15)

The parameters γ̃j of a NNNL model do not directly have a structural
interpretation in a RUM model. The estimates of the underlying parameters
γj can be recovered after estimation as γ̂j = ̂̃γj τ̂k, where ̂̃γj and τ̂k are the
parameter estimates of γ̃j and τk, respectively. This should be kept in mind
when the parameters are interpreted.

In order to illustrate this point, table 1 shows the results for both a
RUMNL (Model A) and a NNNL (Model B). The chosen nesting structure
is depicted in figure 1: The public transportation modes (train and bus)
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as well as the other modes (air and car) share a nest. Both models are
equivalent in terms of the log likelihood. The estimated IV parameters are
also identical. But the other parameter estimates differ. As discussed above,
the RUMNLmodel directly estimates the structural parameters γj . They can
be recovered from the NNNL estimates by rescaling them. For example, the
estimate for the structural parameter of ‘hinc×train’ is γ̂hinc×train = −0.047.
It can be recovered from the NNNL estimates by multiplying its coefficient̂̃γhinc×train = −0.088 with the estimated IV parameter of the respective nest
τ̂public = 0.539 as can be easily verified: −0.047 = −0.088× 0.539.

This scaling impedes the direct interpretation of the NNNL estimates and
of tests based on them. For example the presented asymptotic t-statistic
for ‘hinc×train’ for the NNNL model does not test whether income has an
effect on the probability of taking the train relative to taking the car. The
appropriate null hypothesis is H0 : γ̃hinc×train × τpublic = 0. Likewise, the test
of the null hypothesis H0 : γtime×air = γtime×bus for the RUMNL model is
equivalent to the test of null hypothesis H0 : τ̃time×air × τother = γ̃time×bus ×
τpublic for the NNNL model. For the RUMNL model, these hypotheses can
be tested in a standard way:4

. nlogitrum mode asc_* hinc_* time_*, group(grp) nests(travel type)

(output omitted )

. test hinc_train = 0

( 1) [travel]hinc_train = 0.0

chi2( 1) = 6.07
Prob > chi2 = 0.0138

. test time_air=time_bus

( 1) [travel]time_air - [travel]time_bus = 0.0

chi2( 1) = 26.45
Prob > chi2 = 0.0000

These direct tests are invalid after NNNL estimation. It would be wrong
to test these hypotheses after the NNNL model as

. nlogit mode (travel = asc_* hinc_* time_* )(type=temp), group(grp) const (1)

(output omitted )

. test hinc_train = 0

( 1) [travel]hinc_train = 0.0

chi2( 1) = 4.02
Prob > chi2 = 0.0450

. test time_bus=time_air

( 1) - [travel]time_air + [travel]time_bus = 0.0

4The syntax of nlogitrum will be introduced in section 4.
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chi2( 1) = 2.23
Prob > chi2 = 0.1352

Instead, the correct tests that are equivalent to those after the RUMNL
estimation can be obtained from the NNNL models if the scaling is taken
into account:

. testnl _b[hinc_train]*[public]_cons = 0

(1) _b[hinc_train]*[public]_cons = 0

chi2(1) = 6.07
Prob > chi2 = 0.0138

. testnl _b[time_air]*[other]_cons = _b[time_bus]*[public]_cons

(1) _b[time_air]*[other]_cons = _b[time_bus]*[public]_cons

chi2(1) = 26.45
Prob > chi2 = 0.0000

So in the case of alternative-specific coefficients, both models are equiv-
alent. But while the RUMNL model directly estimates the parameters of
interest, the estimated coefficients from NNNL have to be rescaled before
they are to be interpreted and when tests are based on them. For example,
the asymptotic t-statistics from the output of nlogit do not correspond to
tests of intrinsically interesting hypotheses.

3.2 The case of generic variables

The alternative-specific utility can also be affected by attributes of the al-
ternative such as the price of the transportation mode. This factor can be
allowed for in RUM models by introducing a single parameter for each of
these variables that are called generic variables. In equation (2), this is done
by including x′

jβ in the specification of the utility: The subscript for the
alternative belongs to the attributes xj and the parameters β are constant
across alternatives.

If generic variables are included in the model, the NNNL specification
is inconsistent with the underlying RUM model. Analogous to the case of
alternative-specific coefficients, the NNNL scales the coefficients of generic
variables with a scaling factor that varies over the nests. But unlike the for-
mer case, the RUM model requires that the parameters β are constant across
alternatives. NNNL replaces this restriction with the restriction of constant
scaled parameters 1

τm
β. This makes the econometric model inconsistent with

the underlying RUMmodel as long as the dissimilarity parameters vary across
nests.
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The differences between RUMNL and NNNL for the case of generic vari-
ables are demonstrated by the estimates shown in table 2. The coefficients
for the variable ‘time’ in table 1 are very similar for the alternatives ‘car’,
‘train’, and ‘bus’ and the hypothesis that they are actually equal can not be
rejected. So table 2 shows the results for a modified specification in which
‘time’ enters as a generic variable. Since the ‘time’ coefficient for ‘air’ signif-
icantly differs from the others in the previous estimates, an interaction term
for ‘time’ with ‘air’ is added. This modification corresponds to constraining
the other three ‘time’ coefficients to be equal to each other.

A comparison of models C and D in table 2 shows that the NNNL model
does not give the same estimates as the RUMNL model in this case. In
particular, the log likelihood differs between both models.5 This is because
the IV parameters not only constitute the (dis)similarities, but also the dif-
ferent scaling of the generic variable across nests. As a result, model D is
misspecified.

If one is willing to assume a priori that the dissimilarity parameters of all
nests in a nesting level have the same value, the problem of a misspecified
NNNL model disappears. This is demonstrated in models E and F in table
2. In this case, the results from RUMNL and NNNL only differ in the
scaling of the parameters. The presence of the generic variable does not
distort the estimates of the NNNL model, since its parameter is forced to
be scaled equally in each nest. The problem with this constraint is that it
cannot be tested with NNNL estimates, because the unconstrained model
D is misspecified. In contrast, both RUMNL specifications are valid and a
comparison of the log likelihood values from models C and E clearly shows
that this constraint is rejected by the data.

3.3 Degenerate nests

If a nest only contains one alternative, it is called degenerate nest. The
dissimilarity parameter of degenerate nests is not identified in the RUMNL
model. This can be easily seen from equations (3) to (6). Since nest Nk

only contains alternative j, its inclusive value simplifies to IVk =
1
τk

Vj . The

conditional probability P (y = j|y ∈ Nk) is trivially equal to unity. The

5The point here is not that the likelihood value of the NNNL model is lower. That
does not need to be the case if the restrictions imposed by the specification of a generic
variable does not hold. It is important to note that it is different.
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dissimilarity parameter τk cancels out in the probability of choosing nest Nk,
so it appears neither in the marginal probability of choosing alternative j, nor
in the likelihood function. This is intuitive since the concept of (dis)similarity
does not make sense with only one alternative.

In the NNNL model however, the dissimilarity parameter does not van-
ish from the choice probability and may be statistically identified. If only
alternative-specific parameters γ̃j are included in the model, they are not
jointly identified with the dissimilarity parameter in degenerate nests. So
the dissimilarity parameter can be constrained to any nonzero value. The
only effect of choosing this value is that the ML estimates of γ̃j are scaled
accordingly.

If at least one generic variable is included in the NNNL model, the IV
parameter of degenerate nests may be identified along with the other model
parameters. This identification comes from the restriction of equal scaled
parameters 1

τm
β across alternatives and nests and the parameters only con-

stitute this scaling. A conventional approach to restrict the IV parameter
to be equal to unity does not result in a model that is consistent with the
underlying RUM model.

This is demonstrated with the estimates shown in table 3. The fact that
the estimated dissimilarity parameter of the nest ‘other’ in table 2 is substan-
tially larger than 1 indicates that the alternatives ‘air’ and ‘car’ should not
share a nest. Therefore, the nesting structure is modified by splitting this
nest into two degenerate nests. The resulting nesting structure is depicted
in figure 2. In models G and H shown in table 3, the variable ‘time’ purely
enters as a generic variable. The dissimilarity parameters of the degenerate
nests ‘air’ and ‘car’ are not identified from the RUMNL model G. As argued
above, they cancel out of the likelihood function. In contrast, all IV param-
eters are identified in the NNNL model H. It has two more free parameters
than the RUMNL model and a substantially higher likelihood value.

However, these IV parameters do not have anything to do with (dis)similarity.
They simply relax the constraint of equal scaling of the generic variable co-
efficient across nests. To demonstrate this, models I and J shown in table
3 do the same explicitly by estimating a separate ‘time’ coefficient for each
nest. As a result, the IV parameters of the degenerate nests are not jointly
identified with the other parameters of the corresponding nests in the NNNL
model and have to be constrained to any nonzero number. Both models
result in the same log likelihood value and the parameters are equivalent if
the NNNL parameters are rescaled with the value of the corresponding IV
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parameter. The results are also equivalent to model H. This supports the
assertion that the IV parameters in model H do nothing more than relax the
constraint of equal scaling.

So if there is only one generic variable present in the model, the NNNL
estimate of the IV parameter can be interpreted in a straightforward way,
although this is probably not the way the researcher intends to interpret IV
parameters. It is much more direct to explicitly relax the specification of
generic variables. If there are more than one generic variables, the inter-
pretation becomes more obscure. Then the NNNL specification imposes the
restriction that the coefficients of all generic variables differ proportionally
across nests. Greene (2000, example 19.18) presents model that has this
problem. It is a NNNL model based on the same data used in this paper.
In addition to ‘time’, the generic variable ‘cost’ is included. As a result, the
estimates have no clear interpretation. The RUMNL avoids the danger of
misspecification and misinterpretation.

3.4 Dummy nests

There is a way to ‘trick’ NNNL software into estimating a RUM consistent
nested logit model independent of the type of included explanatory variables
and without imposing equality of dissimilarity parameters. Koppelman and
Wen (1998) propose to add degenerate dummy nests and constrain their IV
parameters appropriately. This can most easily explained by an example.

Figure 3 shows the nesting structure for the travel mode choice example
according to figure 1 with appropriate dummy nests added. For each alterna-
tive, such a degenerate nest is specified. The corresponding IV parameters ρ1

through ρ4 are shown next to each nest along with the respective constraint.
The two ‘Public’ alternatives each have a degenerate dummy nest whose IV
parameters are constrained to be equal to the IV parameter of the ‘Other’
nest. Intuitively, their parameters are first scaled by 1/τ1. Then the addi-
tional dummy nest scales them by 1/τ2. For the two ‘Other’ alternatives, this
works accordingly. As a result, the parameters of all alternatives are scaled
by 1

τ1τ2
. While τ1 and τ2 can be allowed to differ, this does not translate into

different scaling across nests.
Table 4 shows the results from a specification according to this strategy.

Model K shown there is identical to model C shown in table 2. It could not
be reproduced by NNNL since it contains generic variables and the IV pa-
rameters are allowed to differ between nests. Model L is a NNNL model with
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the dummy nests added as described above. As can be seen, this specifica-
tion mimics the RUMNL model except for the scaling of the parameters for
the explanatory variables. The structural coefficients can be recovered from
these estimates by multiplying the estimated coefficients by both estimated
IV parameters. For example, the coefficient for ‘hinc×train is -0.047. it can
be calculated from the NNNL-DN estimates as -0.047 = -0.018 × 4.801 ×
0.545.

Depending on the original nesting structure, a large number of dummy
nests may be needed for this strategy. This complicates both the specification
and the estimation.6 This strategy therefore seems to be a real alternative to
RUMNL for researchers who only have access to a NNNL implementation.

4 Stata implementation

The NNNL model is available for Stata 7.0 users as the nlogit command.
As argued in this paper, the RUMNL model is preferable in most situa-
tions. This section introduces the command nlogitrum.ado that implements
the RUMNL model and that was used to produce all RUMNL estimates in
this paper. Furthermore, the command nlogitdn.ado is described. It adds
dummy nests to any specified nesting structure as discussed in section 3.4.

4.1 Data setup

The data setup for nlogitrum is equivalent to nlogit. That is, a set of
categorical variables altsetvarB [ ... altsetvar2 altsetvar1] is generated using
nlogitgen. The tree structure can be visualized using nlogittree. For a
thorough description see [R] nlogit.

4.2 Syntax

nlogitrum depvar indepvars
[
weight

] [
if exp

] [
in range

]
, group(varname)

nests(altsetvarB [ ... altsetvar2 altsetvar1])
[
notree nolabel clogit

level(#) nolog robust ivconstraints(string) constraints(numlist)

maximize options
]

6The command nlogitdn, introduced in section 4.4, automates the generation of
dummy nests and appropriate constraints.
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The syntax is similar to that of nlogit with one major difference. nlogit
insists on having explanatory variables for each nesting level and nlogitrum

only allows explanatory variables to directly enter the conditional probabil-
ities of the alternatives. There are three reasons for this change. The first
reason is that in many cases the user cannot think of a variable that is specific
to a nest instead of an alternative. So one often ends up throwing nonsense
variables into the specification of nest-specific explanatory variables and con-
straining their coefficients to zero. The second reason is that for the RUMNL
model, it does not make a difference at all if a nest-specific variable is spec-
ified for a nest or for all alternatives within the nest, see equation (7). The
third reason is that it greatly simplifies the syntax and makes it equivalent
to the syntax of clogit except for the additional options.

The option d1 of nlogit does not exist for nlogitrum. The current
version uses the ml method d0.

4.3 Predictions

The syntax for predict after nlogitrum is almost identical to the syntax
after nlogit estimation. The only difference is that the options xbb and
xbb# are replaced by the option xb, since the linear prediction can only be
sensibly defined for the bottom level (the alternatives).

4.4 Generating dummy nests: nlogitdn

The command nlogitdn is a wrapper for nlogit. Its syntax is equivalent to
the nlogit syntax. nlogitdn analyzes the specified nesting structure, adds
appropriate dummy nests and constraints to the specification as discussed in
section 3.4, and calls nlogit. It was used for the estimation of model L in
table 4.

4.5 Examples

In order to help the reader to become accustomed to the syntax, the com-
mands used to produce the example models A through L are listed below.
Most variable names should be self-explanatory. The variable grp identifies
the observations and the variable travel identifies the alternatives and takes
the values 0 for air, 1 for train, 2 for bus, and 3 for car. The variable mode

is the 0/1 coded dependent variable. For most models, the nesting structure
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is depicted in figure 1. The respective variable type was generated using
nlogitgen. For the models G through J, the nesting structure according to
figure 1 was generated with the variable typedeg:

. nlogitgen type = travel(public: 1 | 2, other: 0 | 3 )
new variable type is generated with 2 groups
lb_type:

1 public
2 other

. nlogitgen typedeg = travel(public: 1 | 2, air: 0, car: 3)
new variable typedeg is generated with 3 groups
lb_typedeg:

1 public
2 air
3 car

Since no variables enter the models on the level of the nests, the nonsense
variables nothing1 and nothing2 were generated. The constraints that show
up in the nlogit commands constrain their coefficients to zero. The models
themselves were estimated using the following commands:

. * Model A:

. nlogitrum mode asc_* hinc_* time_*, group(grp) nests(travel type)

(output omitted )

. * Model B:

. nlogit mode (travel = asc_* hinc_* time_* )(type=nothing1), group(grp) const
> (1)
. * Model C:
. nlogitrum mode asc_* hinc_* time time_air, group(grp) nests(travel type)

(output omitted )

. * Model D:

. nlogit mode (travel = asc_* hinc_* time time_air)(type=nothing1), group(grp)
> const (1)

(output omitted )

. * Model E:

. nlogitrum mode asc_* hinc_* time time_air, group(grp) nests(travel type) ivc(
> other=public)

(output omitted )

. * Model F:

. nlogit mode (travel = asc_* hinc_* time time_air)(type=nothing1), group(grp)
> const(1) ivc(other=public)

(output omitted )

. * Model G:

. nlogitrum mode asc_* hinc_* time , group(grp) nests(travel typedeg) ivc(air=3
> .14159, car=3.14159)

(output omitted )

. * Model H:

. nlogit mode (travel = asc_* hinc_* time)(typedeg=nothing2), group(grp) const(
> 2)

(output omitted )

. * Model I:

. nlogitrum mode asc_* hinc_* timepublic time_air time_car, group(grp) nests(tr
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> avel typedeg) ivc(air=3.14159, car=3.14159)

(output omitted )

. * Model J:

. nlogit mode (travel = asc_* hinc_* timepublic time_air time_car)(typedeg=noth
> ing2), group(grp) const(2) ivc(air=1, car=1)

(output omitted )

. * Model K = Model C

. * Model L:

. nlogitdn mode (travel = asc_* hinc_* time time_air)(type=nothing1), group(grp
> ) const (1)

(output omitted )

Note that the IV parameters of ‘air’ and ‘car’ in models G and I do
not actually exist as discussed in section 3.3. Since the algorithm does not
realize this beforehand, these parameters have to be restricted to an arbitrary
nonzero number (in the examples, 3.14159 was chosen).

5 Conclusions

The name ‘nested logit’ has been given to different models. This paper argues
and demonstrates that the seemingly slight difference in the specification
of the outcome probabilities can lead to substantially different results and
interpretations thereof. So researchers using a nested logit model (and the
readers of their results) should be aware of the actual variant used.

One of these variants (called RUMNL in this paper) can be derived from
theoretical models such as random utility maximization models that are
widely used by econometricians. Therefore, the estimated coefficients can
be readily interpreted and simple tests like an asymptotic t-test directly test
hypotheses of interest. This holds irrespective of the type of included ex-
planatory variables and specified nesting structure.

The alternative (called NNNL in this paper) is implemented in the pack-
age nlogit in Stata 7.0. Depending on the model specification, it can give
equivalent results to those of RUMNL and the structural parameters can
be recovered. But in order to do so, the estimated coefficients have to be
rescaled and this also has to be kept in mind for hypothesis tests. This is
the case if only alternative-specific parameters enter the model. If generic
variables (variables with a common coefficient across alternatives) enter the
model, the NNNL model places restrictions on the parameters that are often
counterintuitive. The reason for this is that the inclusive value parameters
in this case not only constitute the (dis)similarities of the alternatives, but
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also the different scaling of the generic variable coefficients across nests. Ex-
amples for numerous important cases support the the produced arguments
and help to understand the effects.

Finally, this paper introduces the Stata package nlogitrum that imple-
ments the preferred RUMNL model.
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Figure 1: Nesting structure for models A through F

Public Other

Train Bus Car Air

Table 1: Alternative-specific coefficients only

(A) (B)
Model RUMNL NNNL

Coef. z Coef. z
const×air 5.751 1.60 1.179 1.29

train 4.498 4.19 8.342 3.07
bus 3.252 2.82 6.030 2.40

hinc× air 0.035 0.90 0.007 0.90
train -0.047 -2.46 -0.088 -2.00
bus -0.020 -1.01 -0.038 -0.95

time× air -0.117 -5.49 -0.024 -3.63
train -0.022 -5.54 -0.040 -4.87
bus -0.021 -5.37 -0.040 -4.92
car -0.022 -5.12 -0.005 -5.03

τ other 4.879 3.58 4.879 3.58
τ public 0.539 3.69 0.539 3.69

Log likelihood -165.12 -165.12
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Table 2: Generic variables

Constraints Unconstrained IV parameters Constrained IV parameters
(C) (D) (E) (F)

Model RUMNL NNNL RUMNL NNNL
Coef. z Coef. z Coef. z Coef. z

const×air 6.383 2.24 2.325 2.56 6.645 3.27 2.556 3.01
train 4.597 4.90 1.101 3.13 3.114 4.40 1.198 3.64
bus 3.601 3.88 0.056 0.13 0.410 0.40 0.158 0.39

hinc× air 0.036 0.93 0.014 1.34 0.039 1.47 0.015 1.47
train -0.047 -2.48 -0.021 -2.39 -0.052 -2.68 -0.020 -2.38
bus -0.019 -0.98 -0.005 -0.51 -0.011 -0.42 -0.004 -0.41

time -0.022 -5.60 -0.008 -6.75 -0.020 -5.67 -0.008 -6.73
time× air -0.098 -5.54 -0.033 -5.39 -0.090 -5.49 -0.035 -6.04

τ other 4.801 3.84 2.638 4.36 2.600 4.40 2.600 4.40
τ public 0.545 3.79 2.535 4.29 2.600 4.40 2.600 4.40

Log likelihood -165.26 -194.01 -194.29 -194.29
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Figure 2: Nesting structure for models G through J

Public (Car) (Air)

Train Bus Car Air

Table 3: Degenerate Nests

(G) (H) (I) (J)
Model RUMNL NNNL RUMNL NNNL

Coef. z Coef. z Coef. z Coef. z
const×air -1.140 -1.97 3.158 3.41 3.613 3.83 3.613 3.83

train 2.231 5.58 13.231 3.14 2.604 4.35 13.231 3.14
bus 2.066 5.14 11.078 2.79 2.180 3.69 11.078 2.79

hinc× air 0.001 0.10 0.011 1.09 0.013 1.09 0.013 1.09
train -0.049 -4.79 -0.236 -2.74 -0.046 -4.25 -0.236 -2.74
bus -0.044 -4.20 -0.167 -2.19 -0.033 -2.94 -0.167 -2.19

time -0.003 -3.79 -0.039 -4.66
time× public -0.008 -6.17 -0.039 -4.66

air -0.044 -6.73 -0.044 -6.73
car -0.007 -6.11 -0.007 -6.11

τ public 0.073 2.96 0.197 3.78 0.197 3.78 0.197 3.78
τ air — —∗ 1.144 3.86 — —∗ 1 —∗∗

τ car — —∗ 0.186 3.74 — —∗ 1 —∗∗

Log likelihood -212.45 -182.57 -182.57 -182.57
*: Parameter does not exist.
**: Parameter normalized to 1.
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Figure 3: Nesting structure with dummy nests

τ1 Public τ2 Other

ρ1 = τ2 PN1 ρ2 = τ2 PN2 ρ3 = τ1 PN3 ρ4 = τ1 PN4

Train Bus Car Air

Table 4: Dummy nests

(K)=(C) (L)
Model RUMNL NNNL-DN

Coef. z Coef. z
const×air 6.383 2.24 2.438 1.51

train 4.597 4.90 1.756 2.61
bus 3.601 3.88 1.375 2.40

hinc× air 0.036 0.93 0.014 0.92
train -0.047 -2.48 -0.018 -1.63
bus -0.019 -0.98 -0.007 -0.86

time -0.022 -5.60 -0.008 -3.08
time× air -0.098 -5.54 -0.037 -2.69

τ other 4.801 3.84 4.801 3.84
τ public 0.545 3.79 0.545 3.79

Log likelihood -165.26 -165.26
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